Security Unlocked 7.14.21
Ep 36 | 7.14.21

Securing the Internet of Things

Transcript

Nic Fillingham: (music) Hello and welcome to Security Unlocked, a new podcast from Microsoft where we unlock insights from the latest in new and research from across Microsoft's security, engineering and operations teams. I'm Nic Fillingham.

Natalia Godyla: And I'm Natalia Godyla. In each episode, we'll discuss the latest stories from Microsoft Security, deep dive into the newest threat intel, research and data science.

Nic Fillingham: And profile some of the fascinating people working on artificial intelligence in Microsoft Security.

Natalia Godyla: And now, let's unlock the pod. (music)

Natalia Godyla: Welcome everyone to another episode of Security Unlocked. Today we are joined by first time guest, Arjmand Samuel, who is joining us to discuss IoT Security, which is fitting as he is an Azure IoT Security leader a Microsoft. Now, everyone has heard the buzz around IoT. There's been constant talk of it over the past several years, and, but now we've all also already had some experience with IoT devices in our personal life. Would about you, Nic? What do you use in your everyday life? What types of IoT devices?

Nic Fillingham: Yeah. I've, I've got a couple of smart speakers, which I think a lot of people have these days. They seem to be pretty ubiquitous. And you know what? I sort of just assumed that they automatically update and they've got good security in them. I don't need to worry about it. Uh, maybe that's a bit naïve, but, but I sort of don't think of them as IoT. I just sort of, like, tell them what I music I want to play and then I tell them again, because they get it wrong. And then I tell them a third time, and then I go, "Ugh," and then I do it on my phone.

Nic Fillingham: I also have a few cameras that are pointed out around the outside of the house. Because I live on a small farm with, with animals, I've got some sheep and pigs, I have to be on the look out for predators. For bears and coyotes and bobcats. Most of my IoT, though, is very, sort of, consummary. Consumers have access to it and can, sort of, buy it or it comes from the utility company.

Natalia Godyla: Right. Good point. Um, today, we'll be talking with Arjmand about enterprise grade IoT and OT, or Internet of Things and operational technology. Think the manufacturing floor of, uh, plants. And Arjmand will walk us through the basics of IoT and OT through to the best practices for securing these devices.

Nic Fillingham: Yeah. And we spent a bit of time talking about zero trust and how to apply a zero trust approach to IoT. Zero trust, there's sort of three main pillars to zero trust. It's verify explicitly, which for many customers just means sort of MFA, multi factorial authentication. It's about utilizing least privilege access and ensuring that accounts, users, devices just have access to the data they need at the time they need it. And then the third is about always, sort of, assuming that you've been breached and, sort of, maintaining thing philosophy of, of let's just assume that we're breached right now and let's engage in practices that would, sort of, help root out a, uh, potential breach.

Nic Fillingham: Anyway, so, Arjmand, sort of, walks us through what it IoT, how does it relate to IT, how does it relate to operational technology, and obviously, what that zero trust approach looks like. On with the pod.

Natalia Godyla: On with the pod. (music) Today, we're joined by Arjmand Samuel, principle program manager for the Microsoft Azure Internet of Things Group. Welcome to the show, Arjmand.

Arjmand Samuel: Thank you very much, Natalia, and it's a pleasure to be on the show.

Natalia Godyla: We're really excited to have you. Why don't we kick it off with talking a little bit about what you do at Microsoft. So, what does your day to day look like as a principle program manager?

Arjmand Samuel: So, I am part of the Azure IoT Engineering Team. I'm a program manager on the team. I work on security for IoT and, uh, me and my team, uh, we are responsible for making sure that, uh, IoT services and clients like the software and run times and so on are, are built securely. And when they're deployed, they have the security properties that we need them and our customers demand that. So, so, that's what I do all a long.

Nic Fillingham: And, uh, we're going to talk about, uh, zero trust and the relationship between a zero trust approach and IoT. Um, but before we jump into that, Arjmand, uh, we, we had a bit of a look of your, your bio here. I've got a couple of questions I'd love to ask, if that's okay. I want to know about your, sort of, tenure here at Microsoft. Y- y- you've been here for 13 years. Sounds like you started in, in 2008 and you started in the w- what was called the Windows Live Team at the time, as the security lead. I wonder if you could talk a little bit about your, your entry in to Microsoft and being in security in Microsoft for, for that amount of time. You must have seen some, sort of, pretty amazing changes, both from an industry perspective and then also inside Microsoft.

Arjmand Samuel: Yeah, yeah, definitely. So, uh, as you said, uh, 2008 was the time, was the year when I came in. I came in with a, a, a degree in, uh, security, in- information security. And then, of course, my thinking and my whole work there when I was hired at Microsoft was to be, hey, how do we actually make sure that our product, which was Windows Live at that time, is secure? It has all the right security properties that, that we need that product to have. So, I- I came in, started working on a bunch of different things, including identity and, and there was, these are early times, right? I mean, we were all putting together this infrastructure, reconciling all the identity on times that we had. And all of those were things that we were trying to bring to Windows Live as well.

Arjmand Samuel: So, I was responsible for that as well as I was, uh, working on making sure that, uh, our product had all the right diligence and, and security diligence that is required for a product to be at scale. And so, a bunch of, you know, things like STL and tech modeling and those kind of things. I was leading those efforts as well at, uh, Windows Live.

Natalia Godyla: So, if 2008 Arjmand was talking to 2021 Arjmand, what would he be most surprised about, about the evolution over the past 13 years, either within Microsoft or just in the security industry.

Arjmand Samuel: Yeah. Yeah. (laughs) That's a great, great question, and I think in the industry itself, e- evolution has been about how all around us. We are now engulfed in technology, connected technology. We call it IoT, and it's all around us. That was not the landscape 10, 15 years back. And, uh, what really is amazing is how our customers and partners are taking on this and applying this in their businesses, right? This meaning the whole industry of IoT and, uh, Internet of Things, and taking that to a level where every data, every piece of data in the physical world can be captured or can be acted upon. That is a big change from the last, uh, 10, 15 to where we are today.

Nic Fillingham: I thought you were going to say TikTok dance challenges.

Arjmand Samuel: (laughs)

Natalia Godyla: (laughs)

Nic Fillingham: ... because that's, that's where I would have gone.

Arjmand Samuel: (laughs) that, too. That, too, right? (laughs)

Nic Fillingham: That's a (laughs) digression there. So, I'm pretty sure everyone knows what IoT is. I think we've already said it, but let's just, sort of, start there. So, IoT, Internet of Things. Is, I mean, that's correct, right? Is there, is there multiple definitions of IoT, or is it just Internet of Things? And then, what does the definition of an Internet of Things mean?

Arjmand Samuel: Yeah, yeah. It;s a... You know, while Internet of Things is a very recognized acronym these days, but I think talking to different people, different people would have a different idea about how Internet of Thing could be defined. And the way I would define it, and again, not, not, uh, necessarily the authority or the, the only definition. There are many definitions, but it's about having these devices around us. Us is not just people but also our, our manufacturing processes, our cars, our, uh, healthcare systems, having all these devices around, uh, these environments. They are, these devices, uh, could be big, could be small. Could be as small as a very small temperature sensor collecting data from an environment or it could be a Roboticom trying to move a full car up and down an assembly line.

Arjmand Samuel: And first of all, collecting data from these devices, then bringing them, uh, uh, using the data to do something interesting and insightful, but also beyond that, being able to control these devices based on those insights. So, now there's a feedback loop where you're collecting data and you are acting on that, that data as well. And that is where, how IoT is manifesting itself today in, in, in the world. And especially for our customers who are, who tend to be more industrial enterprises and so on, it's a big change that is happening. It's, it's a huge change that, uh, they see and we call it the transformation, the business transformation happening today. And part of that business transformation is being led or is being driven through the technology which we call IoT, but it's really a business transformation.

Arjmand Samuel: It's really with our customers are finding that in order to remain competitive and in order to remain in business really, at the end of the day, they need to invest. They need to bring in all these technologies to bear, and Internet of Things happens that technology.

Nic Fillingham: So, Arjmand, a couple other acronyms. You know, I think, I think most of our audience are pretty familiar with IoT, but we'll just sort of cover it very quickly. So, IoT versus IT. IT is, obviously, you know, information technology, or I think that's the, that's the (laughs) globally accepted-

Arjmand Samuel: Yeah, yeah.

Nic Fillingham: ... definition. You know, do you we think of IoT as subset of IT? What is the relationship of, of those two? I mean, clearly, there are three letters versus two letters, (laughs) but there is relationship there. Wh- wh- what are your thoughts?

Arjmand Samuel: Yeah. There's a relationship as well as there's a difference, and, and it's important to bring those two out. Information technology is IT, as we know it now for many years, is all about enterprises running their applications, uh, business applications mostly. For that, they need the network support. They need databases. They need applications to be secured and so on. So, all these have to work together. The function of IT, information technology, is to make sure that the, there is availability of all these resources, applications, networks and databases as well as you have them secured and private and so on.

Arjmand Samuel: So, all of that is good, but IoT takes it to the next level where now it's not only the enterprise applications, but it's also these devices, which are now deployed by the enterprise. I mentioned Roboticoms. Measured in a conference room you have all these equipment in there, projection and temperature sensors and occupancy sensors and so on. So, all of those beco- are now the, the add on to what we used to call IT and we are calling it the IoT.

Arjmand Samuel: Now, the interesting part here is in the industrial IoT space. Th- this is also called OT, operation technology. So, you know, within an organization there'll be IT and OT. OT's operation technology and these are the people or the, uh, function within an organization who deal with the, with the physical machines, the physical plant. You know, the manufacturing line, the conveyor belts, the Roboticoms, and these are called OT functions.

Arjmand Samuel: The interesting part here is the goal of IT is different from the goal of OT. OT is all about availability. OT's all about safety, safety so that it doesn't hurt anybody working on the manufacturing line. OT's all about environmental concerns. So, it should not leak bad chemicals and so on. A while, if you talk about security, and this is, like, a few years back when we would talk about security with an OT person, the, the person who's actually... You know, these are people who actually wear those, uh, hard hats, you know, on, uh, a manufacturing plant. And if you talk about security to an OT person, they will typically refer to that guard standing outside and, and, uh, the-

Nic Fillingham: Physical security.

Arjmand Samuel: The physical security and the, the walls and the cameras, which would make sure that, you know, and then a key card, and that's about all. This was OT security, but now when we started going in and saying that, okay, all these machines can be connected to, to each other and you can collect all this data and then you can actually start doing something interesting with this data. That is where the definition of security and the functions of OT evolved. And not evolving, I mean different companies are at different stages, but they're now evolving where they're thinking, okay, it's not only about the guard standing outside. It's also the fact that the Roboticom could be taken over remotely and somebody outside, around the world, around the globe could actually be controlling that Roboticom to do something bad. And that realization and the fact that now you actually have to control it in the cyber sense and not only in the physical sense is the evolution that happened between OT.

Arjmand Samuel: Now, IT and OT work together as well because the same networks are shared typically. Some of the applications that use the data from these devices are common. So, IT and OT, this is the other, uh, thing that has changed and, and we are seeing that change, is starting to work and come closer. Work together more. IoT's really different, but at the same time requires a lot of stuff that IT has traditionally done.

Natalia Godyla: Hmm. So, what we considered to be simple just isn't simple anymore.

Arjmand Samuel: That's life, right? (laughs) Yeah.

Natalia Godyla: (laughs)

Arjmand Samuel: (laughs)

Natalia Godyla: So, today we wanted to talk about IoT security. So, let's just start with, with framing the conversation a little bit. Why is IoT security important and what makes it more challenging, different than traditional security?

Arjmand Samuel: As I just described, right, I mean, we are now infusing compute and in every environment around us. I mean, we talked a little bit about the conveyor belt. Imagine the conference rooms, the smart buildings and, and all the different technologies that are coming in. These are technologies, while they're good, they're serve a scenario. They, they make things more efficient and so on, but they're also now a point of, uh, of failure for that whole system as well as a way for malicious sectors to bring in code if possible. And to either, uh, imagine a scenario where or an attack where a malicious sector goes into the conveyor belt and knows exactly the product that is passing through. And imagine that's something either takes the data and sells it to somebody or, worse case, stops the conveyor belt. That is millions of dollars of loss very, uh, that data that the company might be incurring.

Arjmand Samuel: So, now that there's infused computer all around us, we are now living in a target which in a environment which can be attacked, and which can be used for bad things much more than what it was when we were only applications, networks and databases. Easy to put a wall around. Easy to understand what's going on. They're easy to lock down. But with all these devices around us, it's becoming much and much harder to do the same.

Nic Fillingham: And then what sort of, if, if we think about IoT and IoT security, one of the things that, sort of, makes it different, I- I th- think, and here I'd love you to explain this, sort of... I- I'm thinking of it as a, as a, as a spectrum of IoT devices that, I mean, they have a CPU. They have some memory. They have some storage. They're, they're running and operating system in some capacity all the way through to, I guess, m- much more, sort of, rudimentary devices but do have some connection, some network connection in order for instruction or data to, sort of, move backwards and forwards. What is it that makes this collection of stuff difficult to protect or, you know, is it difficult to protect? And if so, why? And then, how do we think about the, the, the potential vectors for attack that are different in this scenario versus, you know, protecting lap tops and servers?

Arjmand Samuel: Yeah, yeah. That's a good one. So, uh, what happens is you're right. Uh, IoT devices can be big and small, all right. They could be a small MCU class device with a real-time operating system on it. Very small, very, uh, single purpose device, which is imagine collecting temperature or humidity only. Then we have these very big, what we call the edge or heavy edge devices, which are like server class devices running a Roboticom or, or even a gateway class device, which is aggregating data from many devices, right, as a, a, and then take, taking the data and acting on it.

Arjmand Samuel: So, now with all this infrastructure, one of the key things that we have seen is diversity and heterogeneity of these devices. Not just in terms of size, but also in terms of who manufactured them, when they were manufactured. So, many of the temperature sensors in environments could be very old. Like, 20 years old and people are trying to use the same equipment and not have to change anything there. And which they can. Technically they could, but then those devices were never designed in for a connected environment for these, this data to actually, uh, be aggregated and sent on the network, meaning they per- perhaps did not have encryption built into it. So, we have to do something, uh, additional there.

Arjmand Samuel: And so now with the diversity of devices, when they came in, the, the feature set is so diverse. Some of them were, are more recent, built with the right security principles and the right security properties, but then some of them might not be. So, this could raise a, a challenge where how do you actually secure an infrastructure where you have this whole disparity and many different types of devices, many different manufacturers, many of ages different for these devices. Security properties are different and as we all know talking about security, the attack would always come from the weakest link. So, the attacker would always find, within that infrastructure, the device which has the least security as a entry point into that infrastructure. So, we can't just say, "Oh, I'll just protect my gateway and I'm fine." We have to have some mitigation for everything on that network. Everything. Even the older ones, older devices. We call them brownfield devices because they tend to be old devices, but they're also part of the infrastructure.

Arjmand Samuel: So, how do we actually think about brownfield and the, the newer ones we call greenfield devices? Brownfield and greenfield, how do we think about those given they will come from different vendors, different designs, different security properties? So, that's a key challenge today that we have. So, they want to keep those devices as well as make sure that they are secure because the current threat vectors and threat, uh, the, and attacks are, are much more sophisticated.

Natalia Godyla: So, you have a complex set of devices that the security team has to manage and understand. And then you have to determine at another level which of those devices have vulnerabilities or which one is the most vulnerable, and then, uh, assume that your most vulnerable, uh, will be the ones that are exploited. It, so, is that, that typically the attack factor? It's going to be the, the weakest link, like you said? And h- how does an attacker try to breach the IoT device?

Arjmand Samuel: Yeah, yeah. And, and this is where we, we started using the term zero trust IoT.

Natalia Godyla: Mm-hmm (affirmative).

Arjmand Samuel: So, IoT devices are deployed in an environment which can not be trusted, should not be trusted. You should assume that there is zero trust in that environment, and then all these devices, when they are in there, you will do the right things. You'll put in the right mitigations so that the devices themselves are robust. Now, another example I always give here is, and, uh, I, your question around the attack vectors and, and how attacks are happening, typically in the IT world, now that we, we have the term defined, in the IT world, you will always have, you know, physical security. You will always put servers in a room and lock it, and, and so on, right, but in an IoT environment, you have compute devices. Imagine these are powerful edge nodes doing video analytics, but they're mounted on a pole next to a camera outside on the road, right? So, which means the physical access to that device can not be controlled. It could be that edge node, again, a powerful computer device with lots of, you know, CPU and, and so on, is deployed in a mall looking at video streams and analyzing those video streams, again, deployed out there where any attacker physically can get a hold of the device and do bad things.

Arjmand Samuel: So, again, the attack vectors are also different between IT and OT or IoT in the sense that the devices might not be physically contained in a, in an environment. So, that puts another layer of what do we do to protect such, uh, environments?

Nic Fillingham: And then I want to just talk about the role of, sort of, if we think about traditional computing or traditional, sort of, PC based computing and PC devices, a lot of the attack vectors and a lot of the, sort of, weakest link is the user and the user account. And that's why, you know, phishing is such a massive issue that if we can socially engineer a way for the person to give us their user name and password or whatever, we, we, we can get access to a device through the user account. IoT devices and OT devices probably don't use that construct, right? They probably, their userless. Is that accurate?

Arjmand Samuel: Yeah. That's very accurate. So, again, all of the attack vectors which we know from IT are still relevant because, you know, if you, there's a phishing attack and the administrator password is taken over you can still go in and destroy the infrastructure, both IT and IoT. But at the same time, these devices, these IoT devices typically do not have a user interacting with them, typically in the compute sense. You do not log into an IoT device, right? Except in sensor with an MCU, it doesn't even have a user experience, uh, a screen on it. And so, there is typically no user associated with it, and that's another challenge. So you need to still have an identity off the device, not on the device, but off the device, but that identity has to be intrinsic off the device. It has to be part of the device and it has to be stable. It has to be protected, secure, and o- on the device, but it does not typically a user identity.

Arjmand Samuel: And, and that's not only true for temperature sensors. You know, the smaller MCU class devices. That's true for edge nodes as well. Typically, an edge node, and by the way, when I say the edge node, edge node is a full blown, rich operating system. CPU, tons of memory, even perhaps a GPU, but does not typically have a user screen, a keyboard and a mouse. All it has is a video stream coming in through some protocol and it's analyzing that and then making some AI decisions, decisions based on AI. And, and, but that's a powerful machine. Again, there might never ever be a user interactively signing into it, but the device has an identity of its own. It has to authenticate itself and it workload through other devices or to the Cloud. And all of that has to be done in a way where there is no user attached to it.

Natalia Godyla: So, with all of this complexity, how can we think about protecting against IoT attacks. You discussed briefly that we still apply the zero trust model here. So, you know, at a high level, what are best practices for protecting IoT?

Arjmand Samuel: Yeah, yeah. Exactly. Now that we, we just described the environment, we described the devices and, and the attacks, right? The bad things that can happen, how do we do that? So, the first thing we want to do, talk about is zero trust. So, do not trust the environment. Even if it is within a factory and you have a guard standing outside and you have all the, you know, the physical security, uh, do not trust it because there are still vectors which can allow malicious sectors to come into those devices. So, that's the first one, zero trust.

Arjmand Samuel: Uh, do not trust anything that is on the device unless you explicitly trust it, you explicitly make sure that you can go in and you can, attest the workload, as an example. You can attest the identity of the device, as an example. And you can associate some access control polices and you have to do it explicitly and never assume that this is, because it's a, uh, environment in a factory you're good. So, you never assume that. So, again, that's a property or a principle within zero trust that we always exercise.

Arjmand Samuel: Uh, the other one is you always assume breach. You always assume that bad things will happen. I- it's not if they'll happen or not. It's about when they're s- uh, going to happen. So, for the, that thinking, then you're putting in place mitigations. You are thinking, okay, if bad things are going to happen, how do I contain the bad things? How do I contain? How do I make sure that first of all, I can detect bad things happening. And we have, and we can talk about some of the offerings that we have, like Defender for IoT as an example, which you can deploy on to the environment. Even if it's brownfield, you can detect bad things happening based on the network characteristics. So, that's Defender for IoT.

Arjmand Samuel: And, and once you can detect bad things happening then you can do something about it. You get an alert. You can, you can isolate that device or take that device off the network and refresh it and do those kind of things. So, the first thing that needs to happen is you assume that it's going breach. You always assume that whatever you are going to trust is explicitly trusted. You always make sure that there is a way to explicitly trust, uh, uh, uh, either the workload or the device or the network that is connected onto the device.

Nic Fillingham: So, if we start with verify explicitly, in the traditional compute model where it's a user on a device, we can verify explicitly with, usually, multi factor authentication. So, I have my user name and password. I add an additional layer of authentication, whether it's an, you know, app on my phone, a key or something, some physical device, there's my second factor and I'm, I'm verified explicitly in that model. But again, no users or the user's not, sort of, interacting with the device in, sort of, that traditional sense, so what are those techniques to verify explicitly on an IoT device?

Arjmand Samuel: Yeah. I, exactly. So, we, in that white paper, which we are talking about, we actually put down a few things that you can actually do to, to, en- ensure that you have all the zero trust requirements together. Now, the first one, of course, is you need, uh, all devices to have strong identity, right? So, because identity is a code. If you can not identi- identify something you can not, uh, give it an access control policy. You can not trust the data that is coming out from that, uh, device. So, the first thing you do is you have a strong identity. By a strong identity we mean identity, which is rooted in hardware, and so, what we call the hardware based root of trust. It's technologies like TPM, which ensure that you have the private key, which is secured in our hardware, in the hardware and you can not get to it, so and so on. So, you, you ensure that you have a, a strong identity.

Arjmand Samuel: You always have these privilege access so you do not... And these principles have been known to our IT operations forever, right? So, many years they have been refined and, uh, people know about those, but we're applying them to the IoT world. So, these privilege access, if our device is required to access another device or data or to push out data, it should only do that for the function it is designed for, nothing more than that. You should always have some level of, uh, device health check. Perhaps you should be able to do some kind of test station of the device. Again, there is no user to access the device health, but you should be able to do, and there are ways, there are services which allow you to measure something on the device and then say yes it's good or not.

Arjmand Samuel: You should be able to do a continuous update. So, in case there is a device which, uh, has been compromised, you should be able to reclaim that device and update it with a fresh image so that now you can start trusting it. And then finally you should be able to securely monitor it. And not just the device itself, but now we have to technologies which can monitor the data which is passing through the network, and based on those characteristics can see if a device is attacked or being attacked or not. So, those are the kind of things that we would recommend for a zero trust environment to take into account and, and make those requirements a must for, for IoT deployments.

Natalia Godyla: And what's Microsoft's role in protecting against these attacks?

Arjmand Samuel: Yeah, yeah. So, uh, a few products that we always recommend. If somebody is putting together a new IoT device right from the silicone and putting that device together, we have a great secure be design device, which is called Azure Sphere. Azure Sphere has a bunch of different things that it does, including identity, updates, cert management. All these are important functions that are required for that device to function. And so, a new device could use the design that we have for Azure Sphere.

Arjmand Samuel: Then we have, a gateway software that you put on a gateway which allows you to secure the devices behind that gateway for on time deployments. We have Defender for IoT, again as I mentioned, but Defender for IoT is on-prem, so you can actually monitor all the tracks on the network and on the devices. You could also put a agent, a Micro Agent on these devices, but then it also connects to Azure Sentinel. Azure Sentinel is a enterprise class user experience for security administrators to know what bad things are happening on, on-prem. So, it, the whole end to end thing could works all the way from the network, brownfield devices to the Cloud.

Arjmand Samuel: We also have things like, uh, IoT Hub Device Provisioning service. Device provisioning service is an interesting concept. I'll try to briefly describe that. So, what happens is when you have an identity on a device and you want to actually put that device, deploy that device in your environment, it has to be linked up with a service in the Cloud so that it can, it knows the device, there's an identity which is shared and so on. Now, you could do it manually. You could actually bring that device in, read a code, put it in the Cloud and your good to go because now the Cloud knows about that device, but then what do you do when you have to deploy a million devices? And we're talking about IoT scale, millions. A fleet of millions of devices. If you take that same approach of reading a key and putting it in the Cloud, one, you'd make mistakes. Second, you will probably need a lifetime to take all those keys and put them in the cloud.

Arjmand Samuel: So, in order to solve that problem, we have the device provisioning service, which it's a service in the Cloud. It is, uh, linked up to the OEMs or manufacturing devices. And when you deploy our device in your field, you do not have to do any of that. Your credentials are passed between the service and the, and the device. So, so, that's another service. IoT Hub Device Provisioning Service.

Arjmand Samuel: And then we have, uh, a work, the, uh, a piece of work that we have done, which is the Certification of IoT Devices. So, again, you need the devices to have certain security properties. And how do you do that? How do you ensure that they have the right security properties, like identity and cert management and update ability and so on, we have what we call the Edge Secured-core Certification as well as Azure Certified Device Program. So, any device which is in there has been tested by us and we certify that that device has the right security properties. So, we encourage our customers to actually pick from those devices so that they, they actually get the best security properties.

Natalia Godyla: Wow. That's a lot, which is incredible. What's next for Microsoft's, uh, approach to IoT security?

Arjmand Samuel: Yeah, yeah. So, uh, one of the key things that we have heard our customers, anybody who's going into IoT ask the question, what is the risk I'm taking? Right? So, I'm deploying all these devices in my factories and Roboticom's connecting them, and so on, but there's a risk here. And how do I quantify that risk? How do I understand th- that risk and how do I do something about that risk?

Arjmand Samuel: So, we, we got those questions many years back, like four, five years back. We started working with the industry and together with the Industrial Internet Consortium, IIC, which a consortium out there and there are many companies part of that consortium, we led something called The Security Maturity Model for IoT. So, so, we put down a set of principles and a set of processes you follow to evaluate the maturity of your security in IoT, right? So, it's a actionable thing. You take the document, you evaluate, and then once you have evaluated, it actually give you a score.It says you're level one, or two, or three, or four. Four, that's the authentication. All else is controlled management. And then based on th- that level, you know where you care, first of all. So, you know what your weaknesses are and what you need to do. So, that's a very actionable thing. But beyond that, if you're at level two and you want to be at level four, and by want to means your scenario dictates that you should be at level four, it is actionable. It gives you a list of things to do to go from level two to level four. And then you can reevaluate yourself and then you know that you're at level four. So, that's a maturity

Arjmand Samuel: Now, In order to operationalize that program with in partnership with IAC, we also have been, and IAC's help, uh, has been instrumental here, we have been working on a training program where we have been training auditors. These are IoT security auditors, third party, independent auditors who are not trained on SMMs Security Maturity Model. And we tell our customers, if you have a concern, get yourself audited using SMM, using the auditors and that will tell you where you are and where you need to go. So, it's evolving. Security for IoT's evolving, but I think we are at the forefront of that evolution.

Nic Fillingham: Just to, sort of, finish up here, I'm thinking of some of the recent IoT security stories that were in the news. We won't mention any specifically, but there, there have been some recently. My take aways hearing those stories reading those stories in the news is that, oh, wow, there's probably a lot of organizations out here and maybe individuals at companies that are using IoT and OT devices that maybe don't see themselves as being security people or having to think about IoT security, you know T security. I just wonder if do you think there is a, a population of folks out here that don't think of themselves as IoT security people, but they really are? And then therefore, how do we sort of go find those people and help them go, get educated about securing IoT devices?

Arjmand Samuel: Yeah, that's, uh, that's exactly what we are trying to do here. So, uh, people who know security can obviously know the bad things that can happen and can do something about it, but the worst part is that in OT, people are not thinking about all the bad things that can happen in the cyber world. You mentioned that example with that treatment plant. It should never have been connected to the network, unless required. And if it was connected to the, uh, to the network, to the internet, you should have had a ton a mitigations in place in case somebody was trying to come in and should have been stopped. And in that particular case, y- there was a phishing attack and the administrative password was, was taken over. But even with that, with the, some of our products, like Defender for IoT, can actually detect the administrative behavior and can, can detect if an administrator is trying to do bath things. It can still tell other administrators there's bad things happening.

Arjmand Samuel: So, there's a ton of things that one could do, and it all comes down, what we have realized is it all comes down to making sure that this word gets out, that people know that there is bad things that can happen with IoT and it's not only your data being stolen. It's very bad things as in that example. And so, the word out, uh, so that we can, uh, we can actually make IoT more secure.

Nic Fillingham: Got it. Arjmand, again, thanks so much for your time. It sounds like we really need to get the word out. IoT security is a thing. You know, if you work in an organization that employs IoT or OT devices, or think you might, go and download this white paper. Um, we'll put the link in the, uh, in the show notes. You can just search for it also probably on the Microsoft Security Blog and learn more about cyber security for IoT, how to apply zero trust model. Share it with your, with your peers and, uh, let's get as much education as we can out there.

Arjmand Samuel: Thank you very much for this, uh, opportunity.

Nic Fillingham: Thanks, Arjmand, for joining us. I think we'll definitely touch on cyber security for IoT, uh, in future episodes. So, I'd love to talk to you again. (music)

Arjmand Samuel: Looking forward to it. (music)

Natalia Godyla: Well, we had a great time unlocking insights into security from research to artificial intelligence. Keep an eye out for our next episode.

Nic Fillingham: And don't forget to Tweet us @MSFTSecurity or email us at securityunlocked@Microsoft.com with topics you'd like to hear on a future episode. (music) Until then, stay safe.

Natalia Godyla: Stay secure. (music)